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1. INTRODUCTION

The work presented considers the adaptation of potential theory and the boundary integral

method for the development of computer codes to simulate underwater explosion bubble

dynamics. In order to understand the development of numerical methods like this, it is

important to review some of the pioneering efforts which have lead to its use. One of the

early studies in the area of bubble dynamics was published by Benjamin and Ellis (1966).

Much of the work that followed builds from this fundamental study. Benjamin and Ellis' work

provided a broad examination of the subject matter referring to the well-known implosion

mechanism first recognized by Lord Rayleigh (1917). Their study included a review of the

contributions of such notable authors as Taylor (1950), Taylor and Davies (1950), Cole (1948),

Lamb (1945), Knapp and Hollander (1948), Knapp (1958a, 1958b), and Hammitt (1963). The

effort also provided insight into the physics of bubble jetting. In doing so, the mechanisms

leading to bubble collapse and jetting were examined from both a physical and mathematical

standpoint. In their presentation, the authors considered the importance of the Kelvin impulse.

The bubble's impulse was used to explain the nature of bubble collapse, jetting, and the

formation of toroidal bubbles. They explained, "As a general Interpretation of the phenomenon

of jet penetration through collapsing cavities, one can simply say that the liquid is finding the

only possible way to preserve its impulse as the cavity size decreases.* After a thorough

overview of the bubble pulsation and jetting phenomenon, the authors proceeded to

investigate the phenomenon through a series of experiments. The primary concern of their

study was with the small-scale hydrodynamic processes that lead to cavitation damage.

Therefore, the experimental investigation was initiated with the aim of examining the

phenomena of bubble collapse and jetting near rigid bodies. In the experiments, a free-fall

apparatus was used which created a gravity-free environment to observe bubble collapse.

Additionally, by holding the experimental apparatus fixed, the effects of gravity on bubble

collapse were observed. Using this device, the effects of a nearby boundary and gravity on

bubble jetting were observed separately. The results provided conclusive proof of bubble

jetting in the free field, due to gravity, as well as bubble jetting influenced by a nearby rigid

wall.

Studying the same phenomena, Plesset and Chapman (1971) developed numerical

techniques designed especially for the calculation of bubble collapse and jetting near rigid

. . .. -- = - m = = ml~m n~m umm un iram~lIITP..1



ioundaries. In this model, the effects of viscosity and compressibility of the fluid were

ieglected in the basic conservation laws for mass and momentum. A number of other

;implifying assumptions were made in their model. In summary, they are as follows:

(1) The liquid is incompressible.

(2) The flow is inviscid.

(3) The vapor pressure inside the bubble is uniform and constant.

(4) The ambient fluid pressure remains constant with time.

(5) The bubble contains no permanent gas.

(6) Surface tension effects are negligible.

(7) The effects of gravity are not included.

(8) The bubble is initially spherical and remains axisymmetric thereafter.

As pointed out in their paper, only the first three assumptions are essential to the method

developed. Correspondingly, the same three initial assumptions are adopted in the current

study. Under the assumptions used in their model, the velocity is equal to the gradient of a

potential which satisfies Laplace's equation, and the pressure is given by Bernoulli's equation.

The analysis was carried out based on these equations and a finite difference integration

scheme. In their investigation, Plesset and Chapman simulated two specific cases of an

initially spherical bubble collapsing near a plane solid wall. Their calculation predicted bubble

let speeds sufficient to explain cavitation damage.

In a related numerical study, Chapman and Plesset (1972) extended their original

calculations to include vapor bubbles in an infinite liquid initially perturbed from the spherical

shape. In this study, two cases of bubble collapse were simulated, namely, an oblate ellipsoid

and a prolate ellipsoid. The calculations showed the formation of a high-speed bubble jet

during the late stages of bubble collapse. In both calculations, the bubble's initially elliptical

shape was transformed into a dumbbell shape in the opposite direction of the original

longation during the bubble's collapse. The results also showed the important point-that a

very small, initial deformation from a spherical shrpe limits the applicability of the assumption

Df spherical symmetry. One final important point was that the analysis indicated that the jet

speed at the time of impact is smaller than had been found using linearized theories.
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Another theoretical study important to bubble dynamics was presented by Blake and

Gibson (1981). In their numerical approach, they proceeded under the same fundamental

assumptions of Plesset and Chapman (1971) using incompressible, irrotational flow and a

uniform, internal bubble pressure. The solution centered around the use of a number of ring

distributions of singularities to calculate the potential. The new method was physically more

appropriate than previous methods based on line distributions (Bevir and Fielding 1974). In

their paper, Blake and Gibson investigated the damaging effects of cavitation bubbles and

methods to reduce the possibility of cavitation damage. As pointed out in their work and from

the law of Bjerknes, oscillating bubbles tend to migrate toward rigid boundaries and away from

a free surface. Furthermore, the migration and jetting of bubbles near flexible boundaries are

not fully understood. Their investigation into flexible surfaces concentrated around both

numerical and experimental studies using spark-generated bubbles near a free surface-a

free surface being the limit of flexible surfaces. The study revealed that the approximate

integral-equation approach presented was adequate to simulate the growth and collapse of

vapor bubbles at least one maximum bubble radius from the free surface. They additionally

observed that vapor bubbles in the absence of gravity can be generated within half a

maximum radius of the free surface without venting. Their work provided some excellent

photography and insight into the behavior of bubbles near a free surface.

An alternate numerical approach which was published around the same time as the Blake

and Gibson (1981) contribution and was written by Guerri, Lucca, and Prosperetti (1980).

Their method entailed the use of the now-familiar boundary integral numerical method for the

simulation of nonspherical cavitation bubbles in inviscid, incompressible liquids. Their work

offered an attractive alternative to the finite difference (Plesset and Chapman 1971),

peturbation (Chapman and Plesset 1972; Chahine 1977), and singularity (Blake and Gibson

1981) methods that had been previously presented. The crucial step in the procedure

involves the solution of the potential problem. The potential solution is found using the

boundary integral or boundary element method which is based on an exact relation, namely,

Green's identity. One of the more attractive features of their approach is the method's

efficiency. The efficiency comes from the need of only surface values for the velocity potential

and Its first derivative. Therefore, the method avoids the problem of solving Laplace's

equation over the entire domain occupied by the liquid. Another appealing feature of the

boundary integral method is its excellent performance in calculating the unstable collapse
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phase of the bubble without smoothing techniques. In order to show the reliability of the

computational model, one of the cases originally studied by Plesset and Chapman was

considered for comparison. In this comparison, the velocities of the bubble jet tip agreed

favorably with the previous calculations of Plesset and Chapman. The results presented
several examples of the method's capability to predict bubble collapse and jetting in

axisymmetric configurations. They included the collapse of a bubble near a rigid wall, as

previously studied by Plesset and Chapman, and the calculation of bubble collapse for three

bubbles with colinear centers. Their method was crucial for future multidimensional bubble

codes.

Another major-contribution in the field of bubble dynamics was presented by Chahine,

Perdue, and Tucker (1988). Their work introduced, for the first time, an economical approach

to the numerical study of three-dimensional (3-D) bubble dynamics. The essence of the

method was based on the boundary integral approach. Nonetheless, their study revealed a

number of limiting factors in the boundary integral approach's applicability for 3-D bubble
dynamics, as well as a number of solutions to unforeseen problems in the method. Their
work required a number of contributions in the process of developing numerical methods to

simulate underwater explosion bubble dynamics. One of the hurdles that Chahine and Perdue

needed to overcome was the calculation of the boundary integral method's surface integrals in

3-D configurations. Originally, the numerical calculation of these integrals was thought too

formidable for simple numerical approximation. Therefore, Perdue (1988) underwent the
laborious task of calculating the integrals out exactly. Chahine and Perdue also devised some

innovative methods for the calculation of the tangential components of velocity on the surface

of the bubble. In all these approaches, a number of unforeseen problems with 3-D boundary

integral techniques arose. They included geometric perturbations caused by the choice of the
initial grid, solid angle calculations, initial geometries, and numerical instabilities, to mention

only a few. In Chahine and Perdue's report on the approach, they focused on explosion
bubbles as their topic of interest and discussed the application of their work in calculating

bubble collapse near submerged bodies. They also presented a number of calculations with
rigid plates at various angles of inclination, a calculation near a submerged body, and some

axisymmetric calculations. Their work represented a significant contribution in the field of

computational bubble dynamics. Their work additionally offered a springboard into numerous

unanswered questions regarding the boundary integral method and 3-D computational models.
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2. MATHEMATICAL DEVELOPMENT

The first step in the formulation of this bubble dynamics model was to put the basic laws

of nature governing the phenomenon into a suitable mathematical form. The physical

conditions imposed on the model are depicted graphically in Figure 1. The fluid occupies a

domain 0, bounded by the bubble surface, Sb, solid boundaries, S,, and a surface at infinity,

S.. The fluid contained in the domain 1 is considered incompressible, and inviscid flow is

also assumed. Furthermore, the gas in the bubble is assumed adiabatic. In order to justify

these assumptions, the physical nature of an underwater explosion bubble must be

considered. In the case of underwater explosive detonations, a chemical reaction converts

the original material very quickly into a gas at a very high temperature and pressure. The

temperature of the explosive products directly after detonation can be of the order of 3,0000 C,
with pressures on the order of 50,000 mpa (Cole 1948). The result of the initial detonation is

a compression or shock wave being emitted into the fluid field, followed by the dynamic
expansion and contraction of the gaseous products. After the release of the shock wave,

which is an early time phenomenon, the speed of the bubble's surface remains at least an

order of magnitude smaller than the speed of sound in water. Therefore, the imposition of an
incompressible condition on the fluid is deemed valid for this flow after the first few

microseconds.

Using the bubble radius in the expansion or contraction phase of the bubble pulse as a

characteristic length, a Reynolds number can be calculated. This Reynolds number is found

to be high through most of the bubble growth and collapse. Recalling that the Reynolds
number is the ratio of inertial to viscous forces, it is clear that neglecting viscous terms in the

conservation of momentum equation detracts very little from the accuracy of the solution.

Additionally, under the assumptions that the fluid flow is inviscid and irrotational, the velocity
field can be found from Laplace's equation. In the case of a cavitation bubble, similar

assumptions were shown to be valid by Guerri, Lucca, and Prosperetti (1980) and others

(Blake, Taib, and Doherty 1986; Chahine 1982; Oguz and Prosperetti 1989). In summary, the
gradient of the potential normal to a rigid body is zero, the potential can be determined on the

bubble surface initially, and the velocity and potential at infinity vanish.
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Figure 1. Definition of the Physical Problem.

The physical problem and the assumptions described previously can be stated in

mathematical terms. The resulting mathematical formulation consists of two coupled

equations, one derived from conservation of momentum and the other from the assumptions

of irrotational flow and conservation of mass. Under the assumptions stated, these

fundamental equations take the form of Bernoulli's equation and Laplace's equations. The

solution of these two coupled equations is the basis of the computational model.

The first assumption is that the liquid is incompressible so that the divergence of the

velocity vector is zero. This result derives from the conservation of mass equation and is as

follows:

V -u =0. (1)

For irrotational flow, the curl of the velocity field is zero,

V X u - 0. (2)

The previous expression is only satisfied when the velocity u is a function of the potential
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u - V*. (3)

Combining Equations 1 and 3 yields Laplace's equation to be satisfied in the domain Q

occupied by the fluid,

V= 0. (4)

The boundary conditions under which the equation must be solved are as follows:

dr. V, onS, (5)

€ 0 J rj  -) - , (6)

-VO -n =0 on S, (7)

where r is the position vector of a generic field point. The pressure in the liquid is given by

Bernoulli's equation in the following:
U2 p P.

+_ + gz a -Z, (8)
S2 p p

where p is the liquid density, g is acceleration of gravity, and z Is the vertical component of

the position vector r. In Equation 8, P. denotes the pressure at a large distance from the

bubble on the plane z--O. Insertion of the total derivative do/dt = 4/t + u • VO = a4&/at + u 2

into Equation 8 gives the following:
d u P P (9)

Um. - -- Z.()
dt- 2 p p

The dynamic boundary condition on the surface of the bubble requires the liquid pressure to

equal the internal pressure of the gas Pg. With this, integration in time of the expression in

Equation 9 gives a boundary condition on the bubble's surface for the potential. Furthermore,

the tangential derivatives of the potential on the bubble's surface can be determined from

Equation 9. The remaining quantities to be determined are the gradient of the potential

normal to the surface on the bubble and the internal gas pressure. Thus, Equations 4, 9, and

the boundary conditions stated in Equations 5-7 form the basis for the current computational

7



model. The sections to follow will describe the mathematical model required for the solution

of these two coupled equations under the boundary conditions prescribed.

One of the terms requiring further consideration in the conservation of momentum equation

is the pressure at points on the surface of the bubble. Here, the pressure must equal the sum

of the internal gas pressure and a surface tension component. For explosion bubbles, the

surface tension component has been shown to be of little importance for most cases of

explosion bubble dynamics (Wilkerson 1989, 1990). However, for cavitation and gas bubbles,

this component can be of importance. The relation for the pressure on the surface of an

explosion bubble can be written as follows:

P P , (10)

where P. is the internal gas pressure of the bubble. This pressure, P. must be determined

from an equation of state. After the initial gas pressure is found, the internal gas pressure can

be updated from the ratio of volumes as follows:

Pg = Poo . j, (11)

where V, is the current volume V, is the initial volume, P., is the initial internal gas pressure,

and y is the adiabatic constant which depends on the explosive type. The adiabatic law is

approximate because the thermal penetration length in the bubble is much smaller than its

radius. The adiabatic constant y has been empirically extracted from underwater explosive

testing.

Effective initial conditions are needed to determine P., and the initial radius. As a first

guess for the initial internal bubble gas pressure P.o' the mass of the explosive charge can be

converted directly into a high pressure gas, and an adiabatic pressure volume relation can be

used thereafter. However, due to the finite time required for the explosive to convert into a

gas, the effects of compressibility in the fluid, and the small expansion of the gas products

during the chemical reaction, this assumption results in a poor initial condition for the pressure

and the initial bubble radius. The resulting calculation for predicting bubble radius and bubble

periods has unacceptably high errors when compared to experimental results.
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Recently, Chahine (1989) has shown that with experimental knowledge of minimum and

maximum bubble radii for an explosive type, the Rayleigh-Plesset equation can be integrated,

yielding more consistent initial conditions for the internal pressure at a given radius. The

relation discussed in Chahine (1989) is based on the Rayleigh-Plesset equation or spherical

bubbles and some empirical data from explosion bubble experimentation. The principles of

the expression are given here. The Rayleigh-Plesset equation is as follows:

p[R 3RA] = 3 A2]Jp - Pa (12)p[Rl + . go.-- R

where R is the radius and P, is the ambient pressure far away from the bubble at the initial

depth of its center. Here, the dots denote derivatives with respect to time. When the ambient

pressure P. is constant, Equation 12 is integrable when written in the following form (Plesset

1949):

.-. j-2(RWA2) J (P(R-)R ' -t-P, R2 . (13), (dR

Integrating Equation 13 and allowing the current radius R to equal the maximum bubble

radius, R. to equal the minimum or initial bubble radius, and the corresponding velocities to

equal zero, yields the following relation for the initial bubble pressure:

Poo = PI(Y-1) (1 -x) (14)
1 -?(Y-1 I

where a = Rm/R,. is the ratio of minimum to maximum bubble radii. For a more detailed

derivation of Equation 14, see Chahine (1989). Data for the ratio a can be found for a

number of explosive types in experimental studies (Snay, Goertner, and Price 1952). This

relation applies at large depths where an explosion bubble remains spherical. Since bubbles

are approximately spherical during their growth in shallow water as well, this relation applies

approximately by adjusting P. Therefore, the remaining problem is how to obtain the initial

radius. The initial radius can be determined from one of two methods. One method involves

an empirical relation for the pressure P., based on the weight, explosive type, and volume of

the charge. Once such accepted pressure relation for TNT is (Cole 1948) as follows:

9



P90 - 7.8 (wV (15)
(WTI

where W is the mass of TNT in grams, V is the volume in cm3, P., is the pressure in kilobars,

and ' is the adiabatic constant for TNT, which is approximately 1.25. This relation is valid for

P < 4,500 lb/in2 pressure. The previous relation has been confirmed for TNT underwater

explosive by Wilkerson (1989, 1990).

Another method of determining the initial pressure is based on an empirical relation for the

maximum radius and the previous expression relating the minimum to maximum bubble

radii cx. This approach requires an estimation of R,,. This can be determined on the basis of

empirical rules for explosion bubbles. This rule came from a dimensional analysis argument

which related explosive energy to bubble energy. While the exact roots of the expressions

given here are difficult to trace, the formula for maximum bubble radius of an explosive charge

can be deduced from the following argument. The energy of the explosive charge E is

proportional to the product of the maximum volume of water displaced at a given hydrostatic

pressure times a constant K as follows:

E = KPV. (16)

The energy of the charge is proportional to the weight of the charge W, the hydrostatic

pressure is proportional to the depth Z plus the ambient pressure at the fluid's surface (e.g.,

D = Z + 33 where all depths are in feet), and the maximum volume is proportional to the

maximum radius of the bubble cubed R,.. (At a depth of 33 ft, the hydrostatic head equals

approximately 1 atmosphere of pressure.) From these relations, an expression for the

maximum bubble radius can be written as follows:

R M Z IF3 (17)

where J is a constant to be determined from experimental results. The constant J has been

determined for a number of explosive types at deep depths from underwater explosion

experimentation (Swift and Decius 1950).

10



The remaining quantities to be prescribed for the boundary integral method are the initial

values of the velocity and potential. The velocity is assumed to vanish, u = 0 at t = 0. Since

the physically significant quantity is u = V¢, * can be taken to vanish initially.

To simplify the validation of the codes, it is convenient to use scaling factors, making the
results nondimensional. The parameters chosen are consistent with the thinking used to

determine the initial conditions for the model. P, = hydrostatic plus atmospheric pressure at
the assumed depth of the initial bubble (e.g., an explosive at a 33-ft depth would have a P, of
approximately two atmospheres); p is the density of the fluid; and R'. is given by Equation 17
and corresponds to the observed maximum radius of an explosion bubble in the free field (the
empirical rule just derived for maximum bubble radius in the absence of gravity). Using these
three parameters, scale factors for time T,, length L,, and mass M were defined. They are as

follows:

Ts  M R wM /p P

- RMW ,(18)

M1  , pR.W=.

Dimensionless pressures are defined by P/P,. In terms of these fundamental quantities, the

mathematical model may be written as follows:

V2 5 = 0 .

d u 2  IP zdt 0
Sz,

where all quantities are dimensionless, and the Froude number Is defined by F, = P,/pgL, =

d/R.=, where d is the depth of the charge. It is seen from Equation 19 that for small values of
F,, the effect of gravity is important, while it is negligible for F, >> 1. In particular, the limit in

which the Rayleigh-Plesset equation is appropriate is obtained for F, - cc.
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The boundary integral formulation for the solution of Laplace's equation is based on the

use of Green's second identity which reduces a volume integral to a surface integral. The

remaining surface integral is discretized, yielding a linear algebraic system for the gradient of

the potential normal to the boundaries. The starting point of the boundary integral method is

Green's second identity as follows:

f( f 2_ _ VL ) dS , (20)

which is valid for any pair of sufficiently smooth functions 0 and WJ. In the present approach, 0

is taken to be the velocity potential discussed in Section 2.2, and WF is taken to be the free

space Green's function for Laplace's equation as follows:

1 (21)
1 r - RI

Physically, this represents the field at position R, generated by a source of intensity 4n placed

at r. This function satisfies an equation of the following form:

V2 V = - X8(r - R) , (22)

where the Laplacian is with respect to the variable R. Here, X = 4x if R is internal to the

domain 11. When R is located on the boundary (in particular, on the bubble's surface S), X

equals the solid angle under which the domain 12 is viewed from R. It is important to note

that X must be evaluated for the actual discretized shape of the boundary rather than for the

exact one; otherwise, incorrect numerical results would be found. Substitution of Equations 21

and 22 into Equation 20 yields the following:

1) a ([ (23)--)=s r NR an, anr r _RfIl

The model updating in this formulation involves the time integration of Equation 9 and the

tracking of the bubble's surface with time. In order to follow the bubble's shape, an accurate

estimation of the bubble's surface velocity, based on the tangential and normal velocity, must

be determined. Inaccuracies in the estimation of the bubble's velocity must be determined.

12



Inaccuracies in the estimation of the bubble's velocity will add to instabilities in the numerical

solution. As a first attempt, a first-order finite difference scheme was used. However, the

resulting integration required a small time step and caused the overall computation to be too

long. Therefore, a combination of an explicit and implicit finite difference scheme was used to

help stabilize the bubble code's time integration and model updating. The combination of the

two expressions resulted in a method accurate to the second order and far more stable

numerically. The method used has the following form:

x11 = x, + (x, + x,)At2, (24)

for each of the Cartesian coordinates, and

*1= , + (j, +Oj)A/2 (25)

for updating the potential. Other possible methods to help stabilize the time integration also

exist. One such method is given in Chahine, Perdue, and Tucker (1988). In this approach, a

term for artificial viscosity is included in Equation 9. This term accomplishes the same result

as the combination of the finite difference schemes. Another possibility would be to use a

higher-order predictor corrector method. This method would significantly increase computation

time, thereby defeating some of the appeal of the current method.

For a single degree of freedom system, namely, a spherically symmetric system,

Equation 12 can be integrated directly for a solution. Such solutions have been shown in

good agreement with experimental and other numerical studies (Wilkerson 1989). For an
axisymmetric configuration, it is necessary to break up the bubble's boundary into discrete

segments. For the current development, the initial axisymmetric discretization consists of

equally spaced, straight line segments around the bubble's shape. This initial discretization,

shown in Figure 2, shows how the bubble's shape can be approximated by n straight line

segments with n + 1 nodes. The geometry is based on a cylindrical coordinate system (r, z,O)

where 0 is the counterclockwise rotation about the z axis.

For the axisymmetric formulation, the vectors r and R locating field points on boundaries

are given by the following relations:

13



y LINEAR LINE
SEGMENTS

NODES
COUNTER
"LOCKWISE

"ON
ROTATION/

LOCATION OF A
CONTROL POINT

-constant

Figure 2. Axisymmetric Discretization (Cylindrical Coordinates).

r - [rcos(6),rsin (0),z]

F = [R,0,Z] . (26)

The 3-D formulation offered a number of alternatives with regards to the initial gridding. Some

of the possibilities included three-noded triangles, rectangular patches, or other shaped

elements. For the current numerical model, three-noded triangular patches were used. The

first level of discretization for the 3-D model is based on the initial shape of an icosahedron.

This shape consists of 20 equilateral triangles and 12 nodes, all of which lie on the surface of

a sphere. This initial level of discretization can be improved by breaking up each of the

original triangles into smaller triangles. With each additional level of refinement, the

coarseness of the original icosahedron shape can be gradually improved to more closely

approximate a near-spherical shape. The process of level refinement is shown graphically in

Figure 3.
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Level 1 Level 2 Level 3
20 Elements 80 Elements 180 Elements

12 Nodes 42 Nodes 92 Nodes

Figure 3. First Three Levels of Discretization for Triangles.

A field point anywhere on the surface of an element can be defined by the position vector

r as follows:

3 3 3

r NIx~i + Njyjj + N,z,k , (27)
I-1 1,1 I11

where N, is the shape function for a standard triangular element, x,, y,, z, are the nodal

coordinates, and i, j, k the Cartesian coordinate system's unit vectors. Since these

relationships apply to any linear quantity on the surface of the element, a similar method can

be applied for interpolating the potential and gradient of the potential on the surface in terms

of the shape functions and the nodal values of these quantities. These relations are as

follows:

3
- A N, (28)

I15
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where N, is the same shape function given in Equation 27, € and -/an are the interpolated

potential and gradient of the potential anywhere on the surface of the element, and 01 and

a4an are the nodal values of the potential and gradient of the potential. The global

coordinates of the R vector are as follows:

R, = Rxi + Ry1j + Rz1k (30)

where i refers to the global node number.

3. RESULTS

Comparisons were made with the axisymmetric formulation for free-field bubble jetting.
The present axisymmetric code has been shown to be in good agreement with physical

phenomena and other numerical approaches for the calculation of bubble jet velocities by
Wilkerson (1989). Further, direct comparisons with the axisymmetric code of Oguz and
Prosperetti (1989) were also made.

The first comparison is between the axisymmetric code and the first-order 3-D code. This

comparison uses the results from a calculation for a 1-lb charge of TNT with a total
hydrostatic head of 33 ft. Under these conditions, there is a strong influence of gravity, and

the bubble should form a jet firing the collapse phase of its first pulsation. Plots comparing
velocity and displacement of the north and south poles of the bubble are provided. Figure 4

compares the absolute velocity of the bubble's north pole from the two calculations. Similarly,
Figure 5 compares the absolute velocity of .he bubble's south poles. It is important to note

that these calculations were made using dimensionless quantities. Note that for the

dimensionless units used, the fundamental velocity is PI./P = 33.0 ft/s. Therefore, the

velocities from the south pole, where the bubble jet is formed during the late stages of

collapse, are quite large.
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Similar plots comparing the north and south pole displacements in the two calculations are

given in Figures 6 and 7, respectively. Theoretically, the displacements at bubble maximum in

Figures 6 and 7 should be close to ±1.0 when using nondimensional variables. However, due

to small inaccuracies in the method's ability to predict the bubble's volume in these

calculations, the bubble slightly overexpands. This was expected due to the increase in the

bubble's pressure which is affected by the volume calculation.

Figure 8 shows a comparison between the bubble shape predicted by first-order 3-D code

and the axisymmetric code for the same free-field bubble dynamics simulations. In the figure,

the 3-D code shows good agreement in predicting the broad, smooth bubble jet typical of

gravity induced bubble jetting. The 3-D code used a level four discretization, and the

axisymmetric code uses nine segments. The crude discretization applied in the axisymmetric

calculation was used in order to give a comparable representation of the bubble's surface

between the 3-D and the axisymmetric calculation.

In order to show the potential for 3-D calculations with the boundary integral method, a

series of calculations with infinite rigid plates at various angles is provided. The calculations

include the effects of both gravity and the nearby wall. The nearby wall is simulated by use of

an image bubble. The figures include an infinite plate directly over the bubble (Figure 9), a

plate at a 450 angle above the bubble (Figure 10), a vertical plate adjacent to the bubble

(Figure 11), a plate at 450 angle below the bubble (Figure 12), and a plate directly beneath the

bubble (Figure 13). All of the calculations performed were at a standoff of one bubble radius

for the infinite wall and all calculations used the same Froude number. The maximum bubble

radius was estimated from a free field calculation and is given by Equation 17. The Froude

number is a nondimensional ratio of inertia to gravity forces Fr = V2/gL. These calculations

are for a Froude number of 8.6. The calculation of the Froude number was based on

Fr = V2/gL = L,/gT,2. Additionally, the initial conditions duplicate a 1-lb TNT explosive charge

with a total hydrostatic head of 33 ft. In these calculations, the effects of gravity are fairly

strong. All the figures are made using level four discretization. In Figure 9, the effects of

gravity and attraction to the wall act in the same direction. As expected, the jet is attracted

toward the wall and is somewhat sharper and has a higher velocity than of the free field

calculation (see Figure 8), where the effects of gravity are isolated. It is important to note that

this calculation could have been made with the axisymmetric code. However, the calculations
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Figure 6. Comparisons of Bubble North Pole Surface Displacements as Computed by the
Axisymmetric and 3-D Bubble Codes.

0.4
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• --- Three-Dimensional
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Figure 7. Comparison of Bubble South Pole Surface Displacements as Computed by the

Axisymmetric and 3-D Bubble Codes.
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Figure 8. Predicted Bubble Shapes as Computed by the Axisymmetric and the

3-D Bubble Codes.
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Horizontal Rigid Plate Above Bubble

4d' T=1.97 tAT=2.O1 tAT=2.O6

Non-Dlmensionallzed Time

AT=1.o

Figure 9. The Calculation of an Explosion Bubble's Collapse Near an Infinite Rigid Boundary
Using the 3-D Bubble Code.

450 Inclined Rigid Plate Above Bubble

A T =2. 1

AT=1.os &T=2.02

ATZ1.0Non.Dlmenslonalized Time

Figure 10. The Calculation of an Explosion Bubble's Collapse Near an-Infinite- Rigid Boundary

Usina the 3-D Bubble Code.
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Vertical Rigid Plate Along Side Bubble

t5T=2.15 AT22 AT=2.25
,&T=1.0 Non-Dlmenslonallzed Time

Figure 11. The Calculation of an Explosion Bubble's Collapse Near an Infinite Rigid Boundary
Using the 3-D Bubble Code.

450 Inclined Rigid Plate Below Bubble

AT10AT=2.4 &T=2.45 &T=2.5
Non-Dlmenslonalized Time

Figure 12. The Calculation of an Exglosion Bubble's Collapse Near an Infinite Rigid Boundary

Using the 3-D Bubble Code.
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Horizontal Rigid Plate Below Bubble

AT-1.2 &T-2.45 AT=2.5 AT=2.55
Non-Dimensionalized Time

Figure 13. The Calculation of an Explosion Bubble's Collapse Near an Infinite Rigid Boundary

Using the 3-D Bubble Codes.

with the inclined and vertical plate are not axisymmetric and in the interest of consistency; all

of the figures presented in this section are made using a full 3-D calculation. Figure 10 shows

the influence of a 450 inclined plate above the bubble. In this simulation, the influence of the

plate on the late stages of bubble jet development are evident. The simulations are sufficient

for the determination of jet direction and magnitude of its velocity. Therefore, this method can

be said to be well suited for the study of bubble jetting in a strong gravity field in the presence

of nearby objects. This is of importance from a military standpoint for obvious reasons. In

Figures 11 and 12, the declining influence of the infinite plate on bubble jet directionality can

be clearly seen. Finally, in Figure 13, gravity and the influence of the rigid plate oppose one

another. The calculation indicates the formation of a ring jet around the lower circumference

of the bubble. Similar calculations with bubbles between two infinite plates, where the

attractive force of the plates oppose one another, have been made in axyismmetric conditions

by Kucera and Blake (1989), with a 3-D code by Chahine (1982), and was observed by

Chahine (1989). In these calculations, the bubble forms a ring jet about its circumference

which eventually separates the bubble, in an hourglass fashion, into two bubbles. Both

calculations are similar insofar that they are axisymmetric in nature and the two forces

influencing bubble collapse oppose each other.
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4. SUMMARY

The boundary integral method was used to develop axisymmetric and 3-D numerical

solutions for explosion bubble dynamics studies. These formulations were adapted

specifically for studies involving underwater explosion bubbles. A number of bubble codes
have been developed and are discussed during the current formulation. The validity and

some of the limitations were established through comparisons with previously developed

codes.

The current effort offers a number of alternatives for the calculation of bubble dynamics.

The 3-D code was unique in its numerical solution for the integral evaluation (Wilkerson 1990).

Further, the method developed used a consistent finite element solution for interpolating

values of the potential and the velocities on each triangular element.

Future efforts using this boundary integral approach will be centered around understanding

and controlling inherent instabilities in the solution process which are typically found in

underwater explosion bubble dynamics.
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